Файл: Физиология как наука.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 3496

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наиболее широко в ЦНС распространены медиаторы - амины:

Другие производные аминокислот - ГАМК, глицин, глютамин и др.

Название рецептора определено медиатором, с которым он взаимодействует:

Вегетативная нервная система работает по тем же законам, что и нервная система в целом. Морфологические и функциональные особенности вегетативной нервной системы:

Взаимодействие гормонов и парагормонов с клетками-мишенями

Сокращение мышц. При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.Это повышает уровень ионизированного кальция в цитоплазме клетки.Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн СПР.Это увеличение уровня ионов кальция в области концевых цистерн СПР называют триггерным, так как они (не- большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.Активация рианодиновых рецепторов повышает проницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. При этом ионы кальция начинают взаимодействовать с молекулами тропонина. Возникает тропонин- кальциевый комплекс. В результате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает молекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для головок миозина.Это создает условия для взаимодействия актина и миозина. При взаимодействии головок миозина с центрами актина на короткий момент формируются мостики.Это создает все условия для гребкового движения (мостики, наличие шарнирных участков в молекуле миозина, АТФ-азная активность головок миозина). Происходит смещение нити актина и миозина относительно друг друга. Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочениемышц.Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мембранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы. Так представляется мышечное сокращение с позиций теории скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их скольжение относительно друг друга.Электромеханическое сопряжение. Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых каналов концевых цистерн СПР. Обычно концентрация кальция (Са++) в цитоплазме равна 10" г/л. При этом в районе сократительных белков (актина и миозина) концентрация кальция (Са++) становится равной ,106 г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.Т-системы, обеспечивающие быстрое появление кальция в области концевых цистерн саркоплазматического ретикулума, обеспечивают и электромеханическое сопряжение (т.е. связь между возбуждением и сокращением).Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий. Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).

Регуляция слюноотделения

Сок поджелудочной железы

Тепловой обмен… Все живые организмы делятся на:Гомойотермные - теплокровные (человек и млекопитающие).Пойкилотермные - холоднокровныеОбразующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.Теплопродукция и теплоотдача. Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.Суммарная теплопродукция в организме состоит из:«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Уровень теплообразования в организме зависит от: -величины основного обмена, специфического динамического действия принимаемой пищи-мышечной активности-интенсивности метаболизмаНаибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении -«сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и , прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (

Теории памяти

Понятие высших психических функций (Выготский)

Система АВ0

Другие антигенны эритроцитов

Резус-фактор

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Физиология газообмена в легких

Гуморальная регуляция дыхания

Гуморальная, рефлекторная, нервная регуляция деятельности сердца

1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося

2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт веществчерез

3. Электрические явления в возбудимых тканях. История и открытия. Мембранный потенциал и его происхождение.

Механизм формирования ПС связан с:

4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.

5. Сравнительная характеристика местного и распространяющегося возбуждения. Изменение возбудимости клетки во

6. Механизмы раздражения клетки электрическим током. Критический уровень деполяризации мембраны клетки.

8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения

Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.

9. Нервно-мышечный синапс, его структура. Механизмы и закономерности нервно-мышечной передачи возбуждения.

Закономерности проведения возбуждения через нервно-мышечный синапс:

10. Физиологические свойства скелетных мышц. Виды и режимы сокращений. Одиночное мышечное сокращение и

В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:

Тетанические сокращения отличается от одиночного следующими параметрами:

12. Функциональная характеристика гладких мышц.

13. Сила и работа мышц. Утомление и его особенности в целостном организме.

14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.

Основные свойства нейронов:

15. Биологическая регуляция, ее виды и значение. Контур биологической регуляции. Роль обратной связи в регуляции

16. Саморегуляторные принципы поддержания постоянства внутренней среды организма ( гомеостаз, гомеокинез).

17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных

Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.

19-21. Торможение в ЦНС (И.М. Сеченов). Его виды и роль./ Современные представления о механизмах центрального

Постсинаптическое гиперполяризацийне торможения.

Пресинаптическое деполяризации торможения.

Особенности передачи возбуждения в ЦНС:

23. Рефлекторный принципы регуляции (О.Декарт, Г.Прохаска). Его развитие в трудах И.М.Сеченова, И.П.Павлова,

Рефлекторная дуга имеет следующие звенья:

24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги

25. Рецепторы, их классификация, структура и механизмы возбуждения. Рецепторный и генераторный потенциалы Физиология рецепторов

По расположению рецепторы подразделяют на:

По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:

Физиологические механизмы кодирования информации в рецепторах.

26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.

Анализ информации и кодирования в рецепторах связаны с их свойствами и осуществляются следующим образом:

27. Общие принципы координационной деятельности ЦНС.

28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение

В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-

34. Сегментарные и надсегментарные центры вегетативной нервной системы

35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.

Факторы гуморальной регуляции:

36. Свойства гормонов. Механизмы действия гормонов на клетки организма По химической структуре гормоны делятся на:

Механизм действия на клетки жирорастворимых гормонов:

Механизм действия жирорастворимых гормонов определяет следующие их особенности:

При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:

Механизм действия гормонов с участием ионов Са 2+ и системы кальций-кальмодулин как внутриклеточных посредников.

Ионы Са 2+:

Активный кальмодулин:

40. Общие принципы регуляции функций организма. Взаимодействие нервной, эндокринной и иммунной систем

41. Роль спинного мозга в процессах регуляции опорно-двигательного аппарата и вегетативных функций организмы.

Нарушения функции мозжечка:

Классификация условных и безусловных рефлексов

- постоянство внутренней среды организма;

Современные представления о путях замыкания временных связей:

Эмоции выполнѐят две функции : сигнальную и регуляторную.

Эмоции делят на низшие и высшие.

Формула Г.И. Косицкого:

Структурное обеспечение эмоций. Эмоциогенные структуры мозга.

5.повышение норадреналина- агрессиѐ ,отрицательные стенические эмоции, 6.адреналина-трусливость, депрессиѐ.

Две сигнальные системы действительности

Типы высшей нервной деятельности

Общая характеристика восприятия

Состав крови

Нормы гематокрита

Безазотистые органические компоненты крови

Основные физико-химические константы крови:

Противосвертывающая система крови.

Виды гемоглобина

В норме гемоглобин содержится в виде нескольких соединений:

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Параметры вентиляции легких:

Легочные объемы:

Легочные емкости:

Методы исследования вентиляции легких:

Транспорт О2 и СО2 кровью:

Кислородная емкость крови, анализ кривой диссоциации:

Анализ кривой диссоциации НbО2:

^ Рефлекторная регуляция дыхания

Физиологические свойства сердечной мышцы. Современные представлениѐ о субстрате, природе и градиенте75.

составлѐящей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.

второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.

^ Внутрисердечные механизмы регуляции.

82. Роль сосудов в гемодинамике. Основные законы гемодинамики. Факторы, обеспечивающие движение крови по

83.Кровяное давление, его изменения по ходу сосудистой системы. Артериальное давление, его виды и методы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и

Тонус артериол и венул. Значение его изменений для гемодинамики. Сосудодвигательные нервы и их влияние на

Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в

Обмен веществ и энергии и методы его оценки. Виды энергических затрат. Специфически-динамическое действие

Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав

Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,

97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции

Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,

105. Гипофиз, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов.

106. Физиология щитовидной и околощитовидной желез

107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма

Характеристика зрительной сенсорной системы. Рецепторный аппарат. Фотохимические процессы в сетчатке при

Слуховая сенсорная система. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел, механизмы

Структурно-функциональная организация вестибулярного аппарата его роль в восприятии и оценке положения

Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов

биологические ритмы и их роль в жизнедеятельности организма. Роль биоритмов в профилактике заболеваний и


  • Вставочные нейроны могут быть как возбуждающими,так и тормозными.

  • Спинальные интернейроны ветвятся в пределах нескольких смежных сегментов, образуя внутрисегментарные и межсегментарные связи. 

  • Проэкционные интернейроны - это клетки, длинные аксоны которых формируют восходящие пути спинного мозга.

  • Тормозные интернейроны спинного мозга учавствуют в координации спин. рефлексов, регуляции уровня возбудимости моторных нейронов.

  • Тормозные нейроны(Клетки Реншоу) включены в рефлекторную спинальную дугу иннервации мышц-антагонистов. Это процесс саморегуляции альфа моторных нейронов (пресинаптическое торможение с помощью аксо-аксональных синапсов).

  1. Сразу после разрыва спинного мозга на уровне нижних грудных сегментов у больного прекратились произвольные движения, и произошла потеря чувствительности, а также невозможность осуществления соматических и вегетативных рефлексов, дуги которых замыкаются ниже уровня травмы. Может ли произойти восстановление произвольных движений нижних конечностей?

  • При разрыве спинного мозга ниже 4-6 шейных позвонков наблюдается явление спинального шока,характеризующегося отсутствием рефлесов.У людей это состояние длится от нескольких недель до 4-5 мес.

  • Механизмом обеспечивающим этот состояние является отсутствие возбуждающего влияния РФ.

  • Через время происходит снижение порога и КУД,восстанавливается уровень возбудимости( в некоторых случаях – гиперрефлексия). Но для восстановления функций понадобится пару лет(отростки уцелевших нервных клеток восстанавливаются медленно).

  • Восстановление произвольных движений нижних конечностей свидетельствует о том,что при поражении спинного мозга мотонейроны не подверглись атрофии и их отростки смогли восстановиться ,после разрыва.

  1. При стоянии у человека колени под действием силы тяжести постоянно стремятся согнуться. Какой рефлекторный механизм обеспечивает выпрямление конечностей?

  • Данный рефлекс является полисинаптическим шейным позвоночно-тоническим рефлексом.

  • Рецепторы шейных рефлексов содержатся в мышцах шеи, они возбуждаются при повороте или наклоне головы. Рефлекторная дуга замыкается на уровне I-III шейных сегментов. Импульсы от этих сегментов передаются на мышцы туловища и конечностей, вызывая перераспределение их тонуса, повышая в целом тонус мышц-разгибателей.

  • Рецепторы мышечных веретен – рефлекторное поле для поддержания мышечного тонуса. Основное различие в возбуждении сухожильного органа Гольджи по сравнению с мышечным веретеном заключается в том, что веретено определяет длину мышцы и изменение длины мышцы, тогда как сухожильный орган определяет напряжение мышцы, которое изменяет собственное напряжение рецептора. аким образом, сухожильные рецепторы Гольджи обеспечивают нервную систему непрерывной информацией о степени напряжения любого небольшого сегмента каждой мышцы.

  • Когда рецепторы Гольджи мышечного сухожилия стимулируются при увеличении напряжения связанной с ними мышцы, сигналы передаются к спинному мозгу, вызывая рефлекторный ответ соответствующей мышцы. Этот рефлекс полностью тормозной. Он обеспечивает механизм отрицательной обратной связи, предупреждающий развитие слишком сильного напряжения мышцы.

  • В чем особенность миотатических рефлексов при раздражении первичных окончаний мышечных веретен и с чем она связана?





  1. Верхние конечности человека в покое находятся в состоянии легкого сгибания в локтевом суставе.Чем объяснить данное явление?

  • При постоянном растяжении двуглавой мышци под действием силы тяжести происходит возбуждение мышечных рецепторов.

  • Соответственно в состоянии покоя происходит рефлекторное сокращение бицепса(волокна которого будут иметь за счет рефлекса растяжения повышенный тонус).

  • При растяжении мышци вместе в альфа-мотонейронами активируются гаммамотонейроны,которые иннервируют интрафузальные мышечные волокна.Они играют важную роль в поддержании тонуса мышц.

  • При одностороннем нарушении задних корешков ,иннервирующих верхние конечности, произойдет нарушение чувствитльности на как на поврежденной,так и на неповрежденной сторонах, а также паралич в связи с непоступлением импульсов на мотонейроны от вышележащих отделов.Произойдет разрыв положительной обратной связи.

Вопрос №8

  • 1) Для сохранения дыхания перерезка спинного мозга (у спинального животного) осуществляется не выше 4-6 шейных сегментов

  • 2) Спинальное животное не может сохранять позу и произвольно ее изменять.

  • 3) Спинальное животное не может стоять, так как пересечены связи мотонейронов спинного мозга со структурами ствола, обеспечивающими тонические рефлексы — рефлексы, направленные на сохранение естественной позы.

  • 4) Спинальное животное не способно к произвольным движениям.

  • 5) Будут осуществляться спинальные рефлексы мочеиспускания, сгибания, разгибания, растяжения, ритмические рефлексы. Рефлексы, способствующие изгнанию каловых масс сохраняются, но не могут осуществляться, так как животное не может создать внутрибрюшное давление

Вопрос №9

  • 1) Задний мозг включает продолговатый мозг и варолиев мост.

  • 2) В задний мозг поступают афферентные сигналы от рецепторов кожи и мышц головы, вестибулярных и слуховых рецепторов, вкусовых рецепторов, рецепторов внутренностей.

  • 3) В заднем мозге находятся ядра V-XII черепных нервов. ( V - тройничный, VI - отводящий , VII- лицевой, VIIІ — преддверно-улитковый, IX- языкоглоточный , X- блуждающий, XI- добавочный, XII- подъязычный).

  • 4) От продолговатого мозга начинаются вестибулоспинальный, вестибуломозжечковый и ретикуломозжечковый пути. Пирамидные пути проходя через пирамиды продолговатого мозга образуют перекрест.

  • 5) При прохождении через продолговатый мозг происходит перекрест пирамидных путей (произвольные движения) и тонкого и клиновидного пучков (Голля и Бурдаха) — тактильная чувствительность. Соответственно при одностороннем повреждении структур заднего мозга будет наблюдаться нарушение тактильной чувствительности и произвольных движений на противоположной стороне туловища. Черепные нервы перекрестов не образуют, и нарушения чувствительной и двигательной функций в области головы и шеи будут наблюдаться на стороне повреждения.


Вопрос №10

  • 1) Мезэнцефальное животное способно поддерживать и восстанавливать позу тела.

  • 2) Нормальный тонус мышц.

  • 3) В ответ на световые и звуковые раздражители формируется сторожевой рефлекс («что такое?») - поворот головы и глаз в сторону раздражителя.

  • 4) В формировании сторожевого рефлекса принимают участие: верхние бугры четверохолмия — подкорковые зрительные центры, нижние бугры четверохолмия — подкорковые слуховые и вестибулярные центры.

  • 5) В отличие от бульбарного животного у мезэнцефального животного не наблюдается децеребрационная ригидность — резкое повышение тонуса мышц-разгибателей. ( У бульбарного животного нарушается связь красных ядер среднего мозга с нижележащими отделами ЦНС. Красные ядра - повышают тонус мышц-сгибателей; вытормаживают мотонейроны мышц-разгибателей и ядро Дейтерса продолговатого мозга. Ядро Дейтерса повышает тонус мышц-разгибателей).

Вопрос №11

  • 1) Синдром Паркинсона: нарушение тонких движений пальцев рукстатический тремор, повышение тонуса мышц, затруднение произвольных движений.

  • 2) Синдром Паркинсона может быть связан с повреждением черной субстанции среднего мозга.

  • 3) Черная субстанция участвует в регуляции сложных движений благодаря связи с базальными ганглиями переднего мозга.

  • 4) Влияние черной субстанции на базальные ганглии осуществляется с помощью дофамина.

  • 5) Черная субстанция с помощью дофамина осуществляет тормозное воздействие на базальные ганглии.

Вопрос №12

  • 1) Рефлексы среднего мозга, направленные на поддержание позы тела и положения тела в пространстве - тонические рефлексы. Они подразделяются на статические и статокинетические рефлексы. Среди статических рефлексов выделяют рефлексы положения (позно-тонические) и рефлексы выпрямления. Классификацию предложил Магнус (1924 г.).

  • 2) Рефлексы положения (позно-тонические) направлены на поддержку той части тела куда сместился цент тяжести.

  • 3) Рефлексы положения (позно-тонические) проявляются в перераспределении тонуса мышц шеи, туловища и конечностей.

  • 4) Рефлексы положения осуществляются при раздражении отолитового аппарата вестибулярного анализатора, проприорецепторов мышц и сухожилий, кожных рецепторов шеи.

  • 5) Для обеспечения рефлексов положения достоточен мезэнцефальный уровень организации ЦНС.

Вопрос №13

  • 1) Выпрямительные рефлексы — тонические рефлексы направленные на восстановление нормальной позы.

  • 2) Выпрямительные рефлексы осуществляются при раздражении вестибулярных рецепторов.

  • 3) У животных насильственно положенных на бок или на спину в осуществление выпрямительных рефлексов вовлекаются так же проприорецепторы мышц шеи, рецепторы кожи, которые контактируют с поверхностью на которой лежит или сидит животное, рецепторы зрительного анализатора.

  • 4) Выпрямительные рецепторы у животных насильственно положенных на бок или на спину включают несколько фаз: 1.лабиринтная фаза. Неестественное положение головы воспринимается вестибулярными рецепторами. Рецепторы передают информацию в ЦНС и голова поворачивается теменем вверх. 2. Поднятие головы раздражает проприорецепторы мышц шеи, которые передают информацию в ЦНС. Происходит перераспределение тонуса мышц туловища и конечностей и выпрямление туловища.

  • 5) В осуществлении рефлексов выпрямления участвуют вестибулярные, красные и ретикулярные ядра ствола, двигательные ядра спинного мозга.


Вопрос №14

  • 1) Статокинетические рефлексы возникают под влиянием линейного или углового ускорения.

  • 2) Нистагм головы — при угловом ускорении наблюдается медленное движение головы в сторону противоположную направлению вращения, после чего голова быстро возвращается в исходное положение. Нистагм глаз — медленный поворот глазных яблок в сторону противоположную вращению, после чего — быстрое возвращение в исходное положение.

  • 3) Лифтные рефлексы: увеличение тонуса мышц разгибателей при линейном ускорении вверх и повышение тонуса сгибателей при линейном ускорении вниз. Лифтные рефлексы имеют важное значение при обучении детей правильному приземлению после соскоков, прыжков в глубину.

  • 4) Статокинетические рефлексы осуществляются при раздражении рецепторов отолитового аппарата и рецепторов полукружных каналов.

  • 5) У здоровых людей трудно наблюдать рефлексы положения. У людей с поражениями головного мозга тонус скелетной мускулатуры почти полностью регулируется рефлексами положения — диагностический критерий . Статокинетические рефлексы исследуют во время профессионального отбора лиц, работа которых сопровождается значительными раздражениями вестибулярных рецепторов (пилоты, космонавты).


№15.В экспериментальных исследованиях на кошках Бета-ритм ЭКГ, характерный для бодрствования, сменяется медленным высоко амплитудным ритмом при разрушении медиальной части ствола мозга. С устранением каких влияний этих образований мозга и на какие структуры связанны изменения ЭКГ?

1.Какая структура мозга разрушилась? Ретикулярная формация

2Какая основная функция этой структуры? Основная функция интегративная(контроль над состояниями сна и бодрствования, мышечный (фазный и тонический) контроль, обработка информационных сигналов окружающей и внутренней среды организма, которые поступают по разным каналам).

3.Какие характерные особенности нейронов этой структуры? Нейроны- полимодальные и полисенсорные клетки, которые образуют сетевидные разветвления дендритов, аксоны могут быть как короткими, так и длинными, последние опускаются до СП.м. и поднимаются вверх к коре.

4.Охарактеризуйте, в чем заключается неспецифические влияния, оказываемые этой структурой ствола на кору больших полушарий. Ретикулярная формация оказывает диффузное неспецифическое, нисходящее и восходящее влияние на другие мозговые структуры.

5.За счет чего формируются высокоамплитудный низкочастотный ритм ЭКГ во время сна или отсутствия внешних раздражений?


№16. Экспериментально установлено, что восходящиенеспецифические влияния осуществляют две системы мозга. Какие механизмы взаимоотношений между ними по влиянию на кору больших полушарий?

1.Какие структуры относят к неспецифической активизирующей системе? Структуры НАС: ретикулярная формация ствола мозга, задний гипоталамус.

2.Перечислите структуры тормозной неспецифической системы. Гипногенные зоны: нижний отдел ретикулярной формации ствола мозга, неспецифические ядра таламуса, передние ядра гипоталамуса.

3.Как осуществляются эти взаимоотношения при развитии физиологического сна? Гипногенные зоны усиливают возвратное торможение и за счет этого способствуют сну.

4.Почему РФ, входящая в состав неспецифических систем мозга, считается жизненно важной структурой? РФ выполняет интегративную функцию, в ней много нейронов, образующих жизненно-важные центры(пищевой, сосудо-двигатльный, дыхательный).

5.Какие механизмы, согласно современным представлениям, восходящего активирующего влияния происходят с участием структур таламуса? Через неспецифические ядра таламуса в кору мозга поступают восходящиие активирующие влияния от РФ мозгового ствола.

№17. Многочисленными исследованиями установлено, что влияния РФ формируются на основании интеграции сигналов от различных рецепторов и большинства структур мозга.

1.На какие функции спинного мозга оказывает влияние РФ? Какой путь реализации этих влияний? На рефлекторную.

2.Какой характер влияний РФ на нейроны спинного мозга? РФпо нисходящим ретикулоспинальным путям способна оказывать как активирующее, так и тормозящее влияние на рефлекторную деятельность спинного мозга.

3.Как осуществляются влияния РФ на фазные и тонические рефлексы спинного мозга? Благодаря 2 системам -Нисходящая тормозная система - оказывает тормозные влияния, контролирующие деятельность спинного мозга.
-Нисходящая облегчающая система - в которую входят структуры, улучшающие проведение спинальных рефлексов, как моторных, так и секреторных.

4.Укажите образования РФ оказывающие тормозные влияния на нейроны спинного мозга, а также те, что оказывают активирующий эффект. Если раздражается РФ промежуточного мозга - преобладает тормозное влияние ретикулярной формации. Тормозное влияние происходит через вставочные тормозные нейроны (клетки Реншоу). При раздражении РФ продолговатого мозга происходит повышение активности мотонейронов спинного мозга - нисходящее активирующее влияние.