Файл: Физиология как наука.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 3479

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наиболее широко в ЦНС распространены медиаторы - амины:

Другие производные аминокислот - ГАМК, глицин, глютамин и др.

Название рецептора определено медиатором, с которым он взаимодействует:

Вегетативная нервная система работает по тем же законам, что и нервная система в целом. Морфологические и функциональные особенности вегетативной нервной системы:

Взаимодействие гормонов и парагормонов с клетками-мишенями

Сокращение мышц. При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.Это повышает уровень ионизированного кальция в цитоплазме клетки.Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн СПР.Это увеличение уровня ионов кальция в области концевых цистерн СПР называют триггерным, так как они (не- большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.Активация рианодиновых рецепторов повышает проницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. При этом ионы кальция начинают взаимодействовать с молекулами тропонина. Возникает тропонин- кальциевый комплекс. В результате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает молекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для головок миозина.Это создает условия для взаимодействия актина и миозина. При взаимодействии головок миозина с центрами актина на короткий момент формируются мостики.Это создает все условия для гребкового движения (мостики, наличие шарнирных участков в молекуле миозина, АТФ-азная активность головок миозина). Происходит смещение нити актина и миозина относительно друг друга. Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочениемышц.Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мембранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы. Так представляется мышечное сокращение с позиций теории скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их скольжение относительно друг друга.Электромеханическое сопряжение. Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых каналов концевых цистерн СПР. Обычно концентрация кальция (Са++) в цитоплазме равна 10" г/л. При этом в районе сократительных белков (актина и миозина) концентрация кальция (Са++) становится равной ,106 г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.Т-системы, обеспечивающие быстрое появление кальция в области концевых цистерн саркоплазматического ретикулума, обеспечивают и электромеханическое сопряжение (т.е. связь между возбуждением и сокращением).Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий. Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).

Регуляция слюноотделения

Сок поджелудочной железы

Тепловой обмен… Все живые организмы делятся на:Гомойотермные - теплокровные (человек и млекопитающие).Пойкилотермные - холоднокровныеОбразующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.Теплопродукция и теплоотдача. Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.Суммарная теплопродукция в организме состоит из:«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Уровень теплообразования в организме зависит от: -величины основного обмена, специфического динамического действия принимаемой пищи-мышечной активности-интенсивности метаболизмаНаибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении -«сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и , прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (

Теории памяти

Понятие высших психических функций (Выготский)

Система АВ0

Другие антигенны эритроцитов

Резус-фактор

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Физиология газообмена в легких

Гуморальная регуляция дыхания

Гуморальная, рефлекторная, нервная регуляция деятельности сердца

1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося

2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт веществчерез

3. Электрические явления в возбудимых тканях. История и открытия. Мембранный потенциал и его происхождение.

Механизм формирования ПС связан с:

4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.

5. Сравнительная характеристика местного и распространяющегося возбуждения. Изменение возбудимости клетки во

6. Механизмы раздражения клетки электрическим током. Критический уровень деполяризации мембраны клетки.

8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения

Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.

9. Нервно-мышечный синапс, его структура. Механизмы и закономерности нервно-мышечной передачи возбуждения.

Закономерности проведения возбуждения через нервно-мышечный синапс:

10. Физиологические свойства скелетных мышц. Виды и режимы сокращений. Одиночное мышечное сокращение и

В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:

Тетанические сокращения отличается от одиночного следующими параметрами:

12. Функциональная характеристика гладких мышц.

13. Сила и работа мышц. Утомление и его особенности в целостном организме.

14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.

Основные свойства нейронов:

15. Биологическая регуляция, ее виды и значение. Контур биологической регуляции. Роль обратной связи в регуляции

16. Саморегуляторные принципы поддержания постоянства внутренней среды организма ( гомеостаз, гомеокинез).

17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных

Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.

19-21. Торможение в ЦНС (И.М. Сеченов). Его виды и роль./ Современные представления о механизмах центрального

Постсинаптическое гиперполяризацийне торможения.

Пресинаптическое деполяризации торможения.

Особенности передачи возбуждения в ЦНС:

23. Рефлекторный принципы регуляции (О.Декарт, Г.Прохаска). Его развитие в трудах И.М.Сеченова, И.П.Павлова,

Рефлекторная дуга имеет следующие звенья:

24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги

25. Рецепторы, их классификация, структура и механизмы возбуждения. Рецепторный и генераторный потенциалы Физиология рецепторов

По расположению рецепторы подразделяют на:

По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:

Физиологические механизмы кодирования информации в рецепторах.

26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.

Анализ информации и кодирования в рецепторах связаны с их свойствами и осуществляются следующим образом:

27. Общие принципы координационной деятельности ЦНС.

28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение

В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-

34. Сегментарные и надсегментарные центры вегетативной нервной системы

35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.

Факторы гуморальной регуляции:

36. Свойства гормонов. Механизмы действия гормонов на клетки организма По химической структуре гормоны делятся на:

Механизм действия на клетки жирорастворимых гормонов:

Механизм действия жирорастворимых гормонов определяет следующие их особенности:

При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:

Механизм действия гормонов с участием ионов Са 2+ и системы кальций-кальмодулин как внутриклеточных посредников.

Ионы Са 2+:

Активный кальмодулин:

40. Общие принципы регуляции функций организма. Взаимодействие нервной, эндокринной и иммунной систем

41. Роль спинного мозга в процессах регуляции опорно-двигательного аппарата и вегетативных функций организмы.

Нарушения функции мозжечка:

Классификация условных и безусловных рефлексов

- постоянство внутренней среды организма;

Современные представления о путях замыкания временных связей:

Эмоции выполнѐят две функции : сигнальную и регуляторную.

Эмоции делят на низшие и высшие.

Формула Г.И. Косицкого:

Структурное обеспечение эмоций. Эмоциогенные структуры мозга.

5.повышение норадреналина- агрессиѐ ,отрицательные стенические эмоции, 6.адреналина-трусливость, депрессиѐ.

Две сигнальные системы действительности

Типы высшей нервной деятельности

Общая характеристика восприятия

Состав крови

Нормы гематокрита

Безазотистые органические компоненты крови

Основные физико-химические константы крови:

Противосвертывающая система крови.

Виды гемоглобина

В норме гемоглобин содержится в виде нескольких соединений:

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Параметры вентиляции легких:

Легочные объемы:

Легочные емкости:

Методы исследования вентиляции легких:

Транспорт О2 и СО2 кровью:

Кислородная емкость крови, анализ кривой диссоциации:

Анализ кривой диссоциации НbО2:

^ Рефлекторная регуляция дыхания

Физиологические свойства сердечной мышцы. Современные представлениѐ о субстрате, природе и градиенте75.

составлѐящей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.

второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.

^ Внутрисердечные механизмы регуляции.

82. Роль сосудов в гемодинамике. Основные законы гемодинамики. Факторы, обеспечивающие движение крови по

83.Кровяное давление, его изменения по ходу сосудистой системы. Артериальное давление, его виды и методы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и

Тонус артериол и венул. Значение его изменений для гемодинамики. Сосудодвигательные нервы и их влияние на

Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в

Обмен веществ и энергии и методы его оценки. Виды энергических затрат. Специфически-динамическое действие

Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав

Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,

97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции

Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,

105. Гипофиз, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов.

106. Физиология щитовидной и околощитовидной желез

107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма

Характеристика зрительной сенсорной системы. Рецепторный аппарат. Фотохимические процессы в сетчатке при

Слуховая сенсорная система. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел, механизмы

Структурно-функциональная организация вестибулярного аппарата его роль в восприятии и оценке положения

Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов

биологические ритмы и их роль в жизнедеятельности организма. Роль биоритмов в профилактике заболеваний и

модели транскапиллярного обмена Старлинга, величина ФД и его вектор/направление/ зависят от соотношения между гидростатическим давлением(ГД) ионкотическим давлением(ОД).

В артериальном конце капилляра величина гидростатического давления крови (ГДкр) составляет 30 -35 мм.рт.ст., а онкотического давления крови(ОДкр) –18-20 мм.рт. ст. Определенный вклад в окончательное формирование ФД вносят гидростатическое давления в тканях(ГДтк) - -3- -9 мм.рт.ст./отрицательное/ и онкотическое давление в

тканях(ОДтк)- 4,5- 5,0 мм.рт. ст. Фильтрационное давление расчитывается по формуле ФД=ГД-ОД, а точнее

ФД=(ГДкр- ГДтк)-(ОКкр- ОДтк)


На артериальном конце капилляра ФД=(30-(-5)-(20-5)=20 (мм рт. ст.)

Фильтрация идет по направлению из капилляра в ткань.

На середине капилляра ГДкр становится равным ОДкр.

К венозному концу капилляра ГДкр составляет 10-12 мм.рт.ст. ГДтк приближается к 0. ОДкр в венозном конце капилляра 22-23 мм.рт.ст./увеличивается за счет всасывания воды/, а ОДтк составляет 5,0-5,5 мм.рт.ст.

На венозном конце капилляра ФД=(10-0)-(22,5-5,5)=-7 (мм. рт. ст.), то есть жидкость с растворимым в ней веществами возвращается из ткани в капилляры.

Объемную скорость транскапиллярного обмена(мл/мин) можно представить как

V Kфильт/(ГДкр-ГДтк) - Косм(ОДкр-ОДтк)/, где Кфильт -коэффициент капиллярной фильтрации, отражающий площадь обменной поверхности/количество функционирующих капилляров/ и проницаемость капиллярной стенки для жидкости, Косм- осмотический коэффициент, отражающий реальную проницаемость мембраны для электролитов и белков.

Отклонение от нормы от любого из параметров сопровождается нарушением транскапиллярного обмена. Чаще всего это приводит к появлению отеков:

1.Гидростатический отек/за счет повышения гидростатического давление. 2.Гипоонкотический отек/за счет снижения онкотического давления/ Облегченный и активный транспорт в капиллярах

Происходит по закономерностям изложенным в лекции посвященной транспорту в цитоплазматических мембранах.
Замедление и остановка кровотока в капиллярах или/и снижение гидростатического давления ниже критического уровня обозначается термином- блок микроциркуляции.


64. Особенности гемодинамики в различных сосудистых регионах. Легочное кровообращение… Легочное кровообращение (малый круг кровообращения)



МОК-5-6 литров, низкое ОПС в 8-10 раз меньше, чем в большом круге, зона низкого кровяного давления/ в легочных артериях 15-25 мм.рт.ст., в легочных венах 6-8 мм.рт.ст./

  1. Основная задача - обогащение крови кислородом и выведение СО2.

  2. На эндотелии капилляров - ферменты:

а). кининаза-2 - разрушает брадикинин, образовавшийся в венозной системе.

б). ангиотезинконвертаза - превращает ангиотензин-1 в ангиотензин-2 (способен существенно повышать артериальное давление).

  1. Очень низкий тонус легочных сосудов, т.е. низкое сопротивление кровотоку (в 10 раз меньше, чем в большом круге, отсюда и низкое гидростатическое давление в малом круге).

  2. Большая растяжимость сосудистого русла. Это позволяет не изменять кровяное давление в малом круге при физ. нагрузке, когда кровоток увеличивается в 3-5 раз и выступать в роли кровяного депо.

  3. Большая плотность капилляров (на единицу объема ткани).

  4. Низкая проницаемость капилляров легких для воды вследствие высокой плотности расположения эндотелиальных клеток.

  5. Неравномерная перфузия верхних и нижних долей легких в вертикальном положении./обусловлена низким давлением с системе малого круга/

  6. Кровоток в легких имеет фазных характер зависит от вдоха и выдоха. Во время вдоха кровеносные сосуды легких расширяются, спиралевидные капилляры раскручиваются, объем микроциркуляторного русла увеличивается, периферическое сопротивление снижается, кровоток увеличивается, во время выдоха кровоток снижается

  7. Мускулатура сосудов легких при снижении pO2 и повышении pCO2 в альвеолярном воздухе
сокращается./метаболическая регуляция/.

  1. В ответ на действие гистамина, брадикинина/ дистантное влияние/ гладкая мускулатура легочных сосудов также сокращается/вазоконстриктор ное действие/, т.е. эти вещества в малом круге оказывают противоположное действие, чем в большом круге кровообращения. Ангиотензин на сосуды малого круга оказывает выраженное сосудосуживающие действие. Действие катехоламинов слабо выражено.

  2. Неврогенные влияния на легочной кровоток незначительны. Слабое сосудосуживающее влияние симпатической нервной системы. Влияние парасимпатической нервной системы отсутствуют.

  3. При повышении давления в малом круге кровообращения замедляется работа сердца и расширяются сосуды большого КК./Важнейшая сосудистая рефлексогенная зона/, может возникнуть отек легких.


Кровообращение в коронарных сосудах


В покое коронарный кровоток составляет 200-250 мл/мин(5% от МОК)

Кровоток в сердце при мышечной нагрузке возрастает в 5-7 раз.(функциональная гиперемия).
Особенности сосудистого русла и кровотока:

-Хорошо развитая капиллярная сеть

-Малое диффузное расстояние/от капилляра до кардиомиоцита /,т.к. см. пункт 2

-Высокая растяжимость кровеносного русла

-Высокий базальный тонус коронарных сосудов.

-Кровоснабжение сердца осуществляется в основном в период диастолы./кровоток в систолу снижен/

-Высокая экстракция кислорода миоглобином кардиомиоцитов /до 75%/

-Высокая объемная скорость кровотока

-Фазное изменение линейной скорости кровотока/ускорение в систолу и замедление в диастолу/
Регуляция

Основная цель- обеспечить соответсвие кровотока потребностям сердца в процессе срочной и долговременной адаптации.
Ауторегуляция /миогенная/ регуляция

Высокий базальный тонус, высокая растяжимость коронарного русла позволяют за счет саморегуляции обеспечить относительную независимость коронарного кровотока при изменениях АД от 70 до 160 мм.рт. ст. Нервная регуляция

Коронарные сосуды содержат и альфа- и бета-адренорецепторы.

Симпатические влияние вызывают в одном случаи(при активации бета-адренорецепторов) вызывают дилятацию /расширение/ коронарных сосудов и усиление кровоток в коронарных сосудах (при мышечной работе, положительных эмоциях, отрицательных стенических эмоциях/гнев/), в других случаях(при активации альфа-адренорецепторов) они вызывают вазоконстрикцию и уменьшение кровотока.

Направленность реакции в конкретной ситуации зависит 1)от соотношения количества альфа и бета адренорецепторов в коронарных сосудахх у субъекта 2) от большей предуготовленности /чувствительности/ одного из вида рецепторов.

Прямые холинэргические влияния на кровоток слабо выражены/слабая вазодилятация/.

Гуморальная регуляция

Местная регуляция/метаболическая/ регуляция

Наиболее чувствительны коронарные сосуды к изменению pO2 , концентрации аденазина.

-Снижение pO2 приводит к расширению коронарных сосудов